Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Sci Data ; 10(1): 486, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495585

RESUMO

Brain atlases are important reference resources for accurate anatomical description of neuroscience data. Open access, three-dimensional atlases serve as spatial frameworks for integrating experimental data and defining regions-of-interest in analytic workflows. However, naming conventions, parcellation criteria, area definitions, and underlying mapping methodologies differ considerably between atlases and across atlas versions. This lack of standardized description impedes use of atlases in analytic tools and registration of data to different atlases. To establish a machine-readable standard for representing brain atlases, we identified four fundamental atlas elements, defined their relations, and created an ontology model. Here we present our Atlas Ontology Model (AtOM) and exemplify its use by applying it to mouse, rat, and human brain atlases. We discuss how AtOM can facilitate atlas interoperability and data integration, thereby increasing compliance with the FAIR guiding principles. AtOM provides a standardized framework for communication and use of brain atlases to create, use, and refer to specific atlas elements and versions. We argue that AtOM will accelerate analysis, sharing, and reuse of neuroscience data.


Assuntos
Atlas como Assunto , Encéfalo , Animais , Humanos , Camundongos , Ratos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Fluxo de Trabalho
2.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390046

RESUMO

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Assuntos
Encéfalo , Neurociências , Animais , Humanos , Camundongos , Ecossistema , Neurônios
3.
Nucleic Acids Res ; 51(D1): D358-D367, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370112

RESUMO

Antibodies are ubiquitous key biological research resources yet are tricky to use as they are prone to performance issues and represent a major source of variability across studies. Understanding what antibody was used in a published study is therefore necessary to repeat and/or interpret a given study. However, antibody reagents are still frequently not cited with sufficient detail to determine which antibody was used in experiments. The Antibody Registry is a public, open database that enables citation of antibodies by providing a persistent record for any antibody-based reagent used in a publication. The registry is the authority for antibody Research Resource Identifiers, or RRIDs, which are requested or required by hundreds of journals seeking to improve the citation of these key resources. The registry is the most comprehensive listing of persistently identified antibody reagents used in the scientific literature. Data contributors span individual authors who use antibodies to antibody companies, which provide their entire catalogs including discontinued items. Unlike many commercial antibody listing sites which tend to remove reagents no longer sold, registry records persist, providing an interface between a fast-moving commercial marketplace and the static scientific literature. The Antibody Registry (RRID:SCR_006397) https://antibodyregistry.org.


Assuntos
Anticorpos , Bases de Dados Factuais , Sistema de Registros
4.
Front Neuroinform ; 17: 1276407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250019

RESUMO

Neuroscience has made significant strides over the past decade in moving from a largely closed science characterized by anemic data sharing, to a largely open science where the amount of publicly available neuroscience data has increased dramatically. While this increase is driven in significant part by large prospective data sharing studies, we are starting to see increased sharing in the long tail of neuroscience data, driven no doubt by journal requirements and funder mandates. Concomitant with this shift to open is the increasing support of the FAIR data principles by neuroscience practices and infrastructure. FAIR is particularly critical for neuroscience with its multiplicity of data types, scales and model systems and the infrastructure that serves them. As envisioned from the early days of neuroinformatics, neuroscience is currently served by a globally distributed ecosystem of neuroscience-centric data repositories, largely specialized around data types. To make neuroscience data findable, accessible, interoperable, and reusable requires the coordination across different stakeholders, including the researchers who produce the data, data repositories who make it available, the aggregators and indexers who field search engines across the data, and community organizations who help to coordinate efforts and develop the community standards critical to FAIR. The International Neuroinformatics Coordinating Facility has led efforts to move neuroscience toward FAIR, fielding several resources to help researchers and repositories achieve FAIR. In this perspective, I provide an overview of the components and practices required to achieve FAIR in neuroscience and provide thoughts on the past, present and future of FAIR infrastructure for neuroscience, from the laboratory to the search engine.

5.
Front Neuroinform ; 16: 819198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090663

RESUMO

The stimulating peripheral activity to relieve conditions (SPARC) program is a US National Institutes of Health-funded effort to improve our understanding of the neural circuitry of the autonomic nervous system (ANS) in support of bioelectronic medicine. As part of this effort, the SPARC project is generating multi-species, multimodal data, models, simulations, and anatomical maps supported by a comprehensive knowledge base of autonomic circuitry. To facilitate the organization of and integration across multi-faceted SPARC data and models, SPARC is implementing the findable, accessible, interoperable, and reusable (FAIR) data principles to ensure that all SPARC products are findable, accessible, interoperable, and reusable. We are therefore annotating and describing all products with a common FAIR vocabulary. The SPARC Vocabulary is built from a set of community ontologies covering major domains relevant to SPARC, including anatomy, physiology, experimental techniques, and molecules. The SPARC Vocabulary is incorporated into tools researchers use to segment and annotate their data, facilitating the application of these ontologies for annotation of research data. However, since investigators perform deep annotations on experimental data, not all terms and relationships are available in community ontologies. We therefore implemented a term management and vocabulary extension pipeline where SPARC researchers may extend the SPARC Vocabulary using InterLex, an online vocabulary management system. To ensure the quality of contributed terms, we have set up a curated term request and review pipeline specifically for anatomical terms involving expert review. Accepted terms are added to the SPARC Vocabulary and, when appropriate, contributed back to community ontologies to enhance ANS coverage. Here, we provide an overview of the SPARC Vocabulary, the infrastructure and process for implementing the term management and review pipeline. In an analysis of >300 anatomical contributed terms, the majority represented composite terms that necessitated combining terms within and across existing ontologies. Although these terms are not good candidates for community ontologies, they can be linked to structures contained within these ontologies. We conclude that the term request pipeline serves as a useful adjunct to community ontologies for annotating experimental data and increases the FAIRness of SPARC data.

6.
Gigascience ; 112022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701370

RESUMO

Neuroscience has undergone a significant transformation over the past decade, becoming an increasingly open and FAIR discipline. I provide personal perspectives on the importance of two community organizations, FORCE11: The Future of Research Communications and e-Scholarship and INCF: The International Neuroinformatics Coordinating Facility in providing the intellectual and community environment where ideas and open sharing of data and code were incubated and tried.


Assuntos
Neurociências
7.
Front Physiol ; 13: 795303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547570

RESUMO

We present (i) the ApiNATOMY workflow to build knowledge models of biological connectivity, as well as (ii) the ApiNATOMY TOO map, a topological scaffold to organize and visually inspect these connectivity models in the context of a canonical architecture of body compartments. In this work, we outline the implementation of ApiNATOMY's knowledge representation in the context of a large-scale effort, SPARC, to map the autonomic nervous system. Within SPARC, the ApiNATOMY modeling effort has generated the SCKAN knowledge graph that combines connectivity models and TOO map. This knowledge graph models flow routes for a number of normal and disease scenarios in physiology. Calculations over SCKAN to infer routes are being leveraged to classify, navigate and search for semantically-linked metadata of multimodal experimental datasets for a number of cross-scale, cross-disciplinary projects.

8.
Neurotrauma Rep ; 3(1): 139-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35403104

RESUMO

Traumatic brain injury (TBI) is a major public health problem. Despite considerable research deciphering injury pathophysiology, precision therapies remain elusive. Here, we present large-scale data sharing and machine intelligence approaches to leverage TBI complexity. The Open Data Commons for TBI (ODC-TBI) is a community-centered repository emphasizing Findable, Accessible, Interoperable, and Reusable data sharing and publication with persistent identifiers. Importantly, the ODC-TBI implements data sharing of individual subject data, enabling pooling for high-sample-size, feature-rich data sets for machine learning analytics. We demonstrate pooled ODC-TBI data analyses, starting with descriptive analytics of subject-level data from 11 previously published articles (N = 1250 subjects) representing six distinct pre-clinical TBI models. Second, we perform unsupervised machine learning on multi-cohort data to identify persistent inflammatory patterns across different studies, improving experimental sensitivity for pro- versus anti-inflammation effects. As funders and journals increasingly mandate open data practices, ODC-TBI will create new scientific opportunities for researchers and facilitate multi-data-set, multi-dimensional analytics toward effective translation.

9.
Neuroinformatics ; 20(3): 793-809, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35267146

RESUMO

The challenge of defining and cataloging the building blocks of the brain requires a standardized approach to naming neurons and organizing knowledge about their properties. The US Brain Initiative Cell Census Network, Human Cell Atlas, Blue Brain Project, and others are generating vast amounts of data and characterizing large numbers of neurons throughout the nervous system. The neuroscientific literature contains many neuron names (e.g. parvalbumin-positive interneuron or layer 5 pyramidal cell) that are commonly used and generally accepted. However, it is often unclear how such common usage types relate to many evidence-based types that are proposed based on the results of new techniques. Further, comparing different types across labs remains a significant challenge. Here, we propose an interoperable knowledge representation, the Neuron Phenotype Ontology (NPO), that provides a standardized and automatable approach for naming cell types and normalizing their constituent phenotypes using identifiers from community ontologies as a common language. The NPO provides a framework for systematically organizing knowledge about cellular properties and enables interoperability with existing neuron naming schemes. We evaluate the NPO by populating a knowledge base with three independent cortical neuron classifications derived from published data sets that describe neurons according to molecular, morphological, electrophysiological, and synaptic properties. Competency queries to this knowledge base demonstrate that the NPO knowledge model enables interoperability between the three test cases and neuron names commonly used in the literature.


Assuntos
Neurônios , Parvalbuminas , Humanos , Interneurônios , Fenótipo
10.
Neuroinformatics ; 20(2): 507-512, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35061216

RESUMO

In this perspective article, we consider the critical issue of data and other research object standardisation and, specifically, how international collaboration, and organizations such as the International Neuroinformatics Coordinating Facility (INCF) can encourage that emerging neuroscience data be Findable, Accessible, Interoperable, and Reusable (FAIR). As neuroscientists engaged in the sharing and integration of multi-modal and multiscale data, we see the current insufficiency of standards as a major impediment in the Interoperability and Reusability of research results. We call for increased international collaborative standardisation of neuroscience data to foster integration and efficient reuse of research objects.


Assuntos
Coleta de Dados , Neurociências
11.
Neuroinformatics ; 20(1): 203-219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347243

RESUMO

The past decade has seen accelerating movement from data protectionism in publishing toward open data sharing to improve reproducibility and translation of biomedical research. Developing data sharing infrastructures to meet these new demands remains a challenge. One model for data sharing involves simply attaching data, irrespective of its type, to publisher websites or general use repositories. However, some argue this creates a 'data dump' that does not promote the goals of making data Findable, Accessible, Interoperable and Reusable (FAIR). Specialized data sharing communities offer an alternative model where data are curated by domain experts to make it both open and FAIR. We report on our experiences developing one such data-sharing ecosystem focusing on 'long-tail' preclinical data, the Open Data Commons for Spinal Cord Injury (odc-sci.org). ODC-SCI was developed with community-based agile design requirements directly pulled from a series of workshops with multiple stakeholders (researchers, consumers, non-profit funders, governmental agencies, journals, and industry members). ODC-SCI focuses on heterogeneous tabular data collected by preclinical researchers including bio-behaviour, histopathology findings and molecular endpoints. This has led to an example of a specialized neurocommons that is well-embraced by the community it aims to serve. In the present paper, we provide a review of the community-based design template and describe the adoption by the community including a high-level review of current data assets, publicly released datasets, and web analytics. Although odc-sci.org is in its late beta stage of development, it represents a successful example of a specialized data commons that may serve as a model for other fields.


Assuntos
Pesquisa Biomédica , Traumatismos da Medula Espinal , Ecossistema , Humanos , Disseminação de Informação , Reprodutibilidade dos Testes , Traumatismos da Medula Espinal/terapia
13.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506383

RESUMO

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Assuntos
Neurociências , Reprodutibilidade dos Testes
14.
Neuron ; 110(4): 600-612, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34914921

RESUMO

As neuroscience projects increase in scale and cross international borders, different ethical principles, national and international laws, regulations, and policies for data sharing must be considered. These concerns are part of what is collectively called data governance. Whereas neuroscience data transcend borders, data governance is typically constrained within geopolitical boundaries. An international data governance framework and accompanying infrastructure can assist investigators, institutions, data repositories, and funders with navigating disparate policies. Here, we propose principles and operational considerations for how data governance in neuroscience can be navigated at an international scale and highlight gaps, challenges, and opportunities in a global brain data ecosystem. We consider how to approach data governance in a way that balances data protection requirements and the need for open science, so as to promote international collaboration through federated constructs such as the International Brain Initiative (IBI).


Assuntos
Ecossistema , Neurociências , Segurança Computacional , Disseminação de Informação
16.
PLoS One ; 16(7): e0253538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242248

RESUMO

Increasing attention is being paid to the operation of biomedical data repositories in light of efforts to improve how scientific data is handled and made available for the long term. Multiple groups have produced recommendations for functions that biomedical repositories should support, with many using requirements of the FAIR data principles as guidelines. However, FAIR is but one set of principles that has arisen out of the open science community. They are joined by principles governing open science, data citation and trustworthiness, all of which are important aspects for biomedical data repositories to support. Together, these define a framework for data repositories that we call OFCT: Open, FAIR, Citable and Trustworthy. Here we developed an instrument using the open source PolicyModels toolkit that attempts to operationalize key aspects of OFCT principles and piloted the instrument by evaluating eight biomedical community repositories listed by the NIDDK Information Network (dkNET.org). Repositories included both specialist repositories that focused on a particular data type or domain, in this case diabetes and metabolomics, and generalist repositories that accept all data types and domains. The goal of this work was both to obtain a sense of how much the design of current biomedical data repositories align with these principles and to augment the dkNET listing with additional information that may be important to investigators trying to choose a repository, e.g., does the repository fully support data citation? The evaluation was performed from March to November 2020 through inspection of documentation and interaction with the sites by the authors. Overall, although there was little explicit acknowledgement of any of the OFCT principles in our sample, the majority of repositories provided at least some support for their tenets.


Assuntos
Disseminação de Informação/métodos , Metabolômica/métodos , Bases de Dados Factuais , Humanos , Serviços de Informação , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Estados Unidos
17.
Front Physiol ; 12: 693735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248680

RESUMO

The Data and Resource Center (DRC) of the NIH-funded SPARC program is developing databases, connectivity maps, and simulation tools for the mammalian autonomic nervous system. The experimental data and mathematical models supplied to the DRC by the SPARC consortium are curated, annotated and semantically linked via a single knowledgebase. A data portal has been developed that allows discovery of data and models both via semantic search and via an interface that includes Google Map-like 2D flatmaps for displaying connectivity, and 3D anatomical organ scaffolds that provide a common coordinate framework for cross-species comparisons. We discuss examples that illustrate the data pipeline, which includes data upload, curation, segmentation (for image data), registration against the flatmaps and scaffolds, and finally display via the web portal, including the link to freely available online computational facilities that will enable neuromodulation hypotheses to be investigated by the autonomic neuroscience community and device manufacturers.

18.
PLoS Comput Biol ; 17(5): e1008967, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34043624

RESUMO

Antibodies are widely used reagents to test for expression of proteins and other antigens. However, they might not always reliably produce results when they do not specifically bind to the target proteins that their providers designed them for, leading to unreliable research results. While many proposals have been developed to deal with the problem of antibody specificity, it is still challenging to cover the millions of antibodies that are available to researchers. In this study, we investigate the feasibility of automatically generating alerts to users of problematic antibodies by extracting statements about antibody specificity reported in the literature. The extracted alerts can be used to construct an "Antibody Watch" knowledge base containing supporting statements of problematic antibodies. We developed a deep neural network system and tested its performance with a corpus of more than two thousand articles that reported uses of antibodies. We divided the problem into two tasks. Given an input article, the first task is to identify snippets about antibody specificity and classify if the snippets report that any antibody exhibits non-specificity, and thus is problematic. The second task is to link each of these snippets to one or more antibodies mentioned in the snippet. The experimental evaluation shows that our system can accurately perform the classification task with 0.925 weighted F1-score, linking with 0.962 accuracy, and 0.914 weighted F1 when combined to complete the joint task. We leveraged Research Resource Identifiers (RRID) to precisely identify antibodies linked to the extracted specificity snippets. The result shows that it is feasible to construct a reliable knowledge base about problematic antibodies by text mining.


Assuntos
Especificidade de Anticorpos , Mineração de Dados , Animais , Humanos , Camundongos , Redes Neurais de Computação
19.
Genes Brain Behav ; : e12738, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893716

RESUMO

The National Institute on Drug Abuse and Joint Institute for Biological Sciences at the Oak Ridge National Laboratory hosted a meeting attended by a diverse group of scientists with expertise in substance use disorders (SUDs), computational biology, and FAIR (Findability, Accessibility, Interoperability, and Reusability) data sharing. The meeting's objective was to discuss and evaluate better strategies to integrate genetic, epigenetic, and 'omics data across human and model organisms to achieve deeper mechanistic insight into SUDs. Specific topics were to (a) evaluate the current state of substance use genetics and genomics research and fundamental gaps, (b) identify opportunities and challenges of integration and sharing across species and data types, (c) identify current tools and resources for integration of genetic, epigenetic, and phenotypic data, (d) discuss steps and impediment related to data integration, and (e) outline future steps to support more effective collaboration-particularly between animal model research communities and human genetics and clinical research teams. This review summarizes key facets of this catalytic discussion with a focus on new opportunities and gaps in resources and knowledge on SUDs.

20.
iScience ; 23(11): 101698, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33196023

RESUMO

The reproducibility crisis is a multifaceted problem involving ingrained practices within the scientific community. Fortunately, some causes are addressed by the author's adherence to rigor and reproducibility criteria, implemented via checklists at various journals. We developed an automated tool (SciScore) that evaluates research articles based on their adherence to key rigor criteria, including NIH criteria and RRIDs, at an unprecedented scale. We show that despite steady improvements, less than half of the scoring criteria, such as blinding or power analysis, are routinely addressed by authors; digging deeper, we examined the influence of specific checklists on average scores. The average score for a journal in a given year was named the Rigor and Transparency Index (RTI), a new journal quality metric. We compared the RTI with the Journal Impact Factor and found there was no correlation. The RTI can potentially serve as a proxy for methodological quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...